This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617200

An Allylic Rearrangement Arising from Reaction of Fluoride Ion and A 3-Chloro, 4,5-Unsaturated Uronate Derivative

Joseph Kiss^a; Pierre C. Wyss^a; Gerard Flesch^a; Wolf Arnold^a; Klaus Noack^a; Peter Schönholzer^{ab} ^a Pharmaceutical Research Department, Central Research Units F. Hoffmann-La Roche & Co., Ltd., Basle, Switzerland ^b Ecole Nationals Supérieure de Chimie de Mulhouse, Mulhouse, France

To cite this Article Kiss, Joseph , Wyss, Pierre C. , Flesch, Gerard , Arnold, Wolf , Noack, Klaus and Schönholzer, Peter(1985) 'An Allylic Rearrangement Arising from Reaction of Fluoride Ion and A 3-Chloro, 4,5-Unsaturated Uronate Derivative', Journal of Carbohydrate Chemistry, 4: 3, 347 - 361

To link to this Article: DOI: 10.1080/07328308508070185 URL: http://dx.doi.org/10.1080/07328308508070185

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

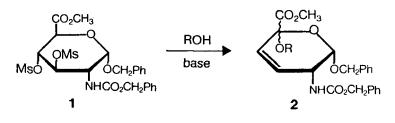
AN ALLYLIC REARRANGEMENT ARISING FROM REACTION OF FLUORIDE ION AND A 3-CHLORO, 4,5-UNSATURATED URONATE DERIVATIVE

> Joseph Kisst, Pierre C. Wyss, Gérard Flesch, Wolf Arnold, Klaus Noack and Peter Schönholzer

Pharmaceutical Research Department and Central Research Units F. Hoffmann-La Roche & Co., Ltd., Basle, Switzerland

Received March 13, 1985 - Final Form June 1, 1985

ABSTRACT


Reaction of methyl [benzyl 2-[(benzyloxycarbonyl)amino]-3-chloro-2,3,4-trideoxy-B-L-threo-hex-4-enopyranosid]uronate (7) with silver fluoride gave the 5-fluoro, 3,4-unsaturated uronate derivative 8, which, on treatment with methanolic ammonia, afforded the corresponding 5-methoxy, uronamide 9. The structures of 8 and 9 were confirmed by spectral data and by x-ray crystallographic analysis of 8. 1H NMR spectroscopy parameters for 9 and its diastereomer 11 have been used to probe the conformational preferences in solution.

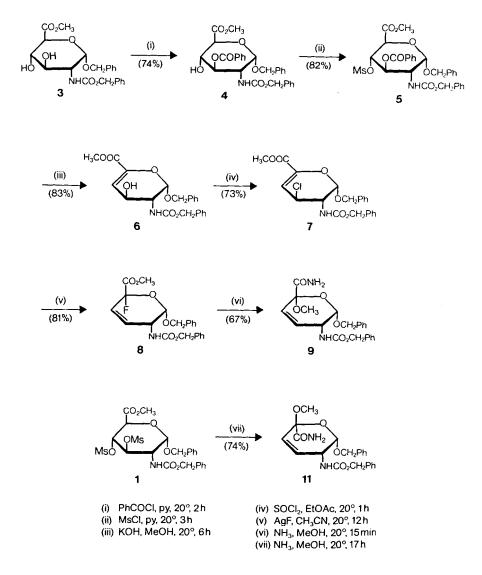
INTRODUCTION

In a previous communication¹ we reported the base-induced, allylic rearrangement of the 3,4-di-O-methylsulfonyl hexopyranosiduronate derivative <u>1</u>. This reaction

+deceased 24.5.1983

^{*}Current address: Ecole Nationale Supérieure de Chimie de Mulhouse, Mulhouse, France

Scheme 1


was conducted in alcoholic solution and yielded the 5-alkoxy, 3,4-unsaturated hexopyranosiduronate derivative 2 (Scheme 1).

We would like to report here a similar reaction involving fluoride ion and methyl [benzyl 2-[(benzyloxycarbonyl)amino]-3-chloro-2,3,4-trideoxy- β -<u>L</u>-threo-hex-4-enopyranosid]uronate (<u>7</u>) to give a new fluorine-containing sugar (<u>8</u>) (Scheme 2).

RESULTS AND DISCUSSION

Methyl [benzyl 2-[(benzyloxycarbonyl)amino]-3-chloro-2,3,4-trideoxy- β -<u>L</u>-threo-hex-4-enopyranosid]uronate (7) was prepared in three steps² from methyl [benzyl 2-[(benzyloxycarbonyl)amino]-2-deoxy- α -D-glucopyranosid]uronate (3). Treatment of 3 with 1 equivalent of benzoyl chloride in pyridine gave the monobenzoylated derivative <u>4</u> as an oil which, on mesylation, afforded crystalline <u>5</u>³. In the next step the alkene <u>6</u> was obtained by treatment of <u>5</u> with methanolic potassium hydroxide. Finally, reaction of <u>6</u> with thionyl chloride in ethyl acetate gave the desired chloro compound <u>7</u>.

In the ¹H NMR spectrum of <u>7</u> H-3 was observed at δ 4.57 as a doublet of doublets (J_{2,3} ~8 Hz and J_{3,4} ~2.5 Hz), reflecting <u>trans</u>-diaxial coupling to H-2 and three-bond allylic coupling with a <u>quasi</u>-axial allylic proton⁴. The observed values are very similar to or identical with

those reported for the 2-hydroxy compound <u>6</u> $(J_{2,3} \sim 9 \text{ Hz})$ and $J_{3,4} = 2.5 \text{ Hz})^3$ and for methyl 1,2,3-tri-O-acetyl-4deoxy-B-<u>L</u>-threo-hex-4-enopyranuronate $(J_{2,3} = 7 \text{ Hz})^3$ and $J_{3,4} = 3 \text{ Hz})^5$, and may be interpreted in terms of a $^{2}\text{H}_{1}$ half-chair conformation⁶ (10, Figure 1).

Reaction of <u>7</u> with silver fluoride in acetonitrile then afforded the crystalline fluoro derivative <u>8</u> in 81%

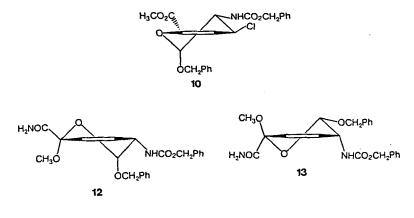


Figure 1

yield. The fluoro substituent in the new uronate 8 is linked to C-5; thus its reactivity should be similar to a glycosyl fluoride. The fluorine in 8 is additionally activated because it is allylic. Due to this "double" activation, the sugar was expected to be very reactive. Accordingly, it was converted within minutes into the corresponding 5-C-methoxyuronamide 9 when treated with methanolic ammonia at room temperature. The structures of 8 and 9 were proved by elemental analysis and spectral data (UV, CD and NMR), and by X-ray crystallographic analysis of 8. A projection of the structure indicating atom numbering, and a stereographic view are given in Figures 2 and 3, respectively. The absorption at \sim 240 nm in the UV spectra of 6 and 7 was not observed in that of 8, indicating that the double bond is isolated in this latter compound. The NMR-signal of H-3 (δ 6.0) of 8 appeared at a 1.4-ppm lower field than that (δ 4.57) of the chloro compound 7, which is consistent with a vinylic proton. The circular dichroism spectra of 8 and 9 showed negative bands at 217 nm (8), and 236 and 206 nm (9), suggesting that both compounds have the same ring-conformation. In contrast, a positive band was observed at 233 nm for the diastereomer of 9 (11), obtained as the major product of the reaction of the 3,4-di-O-methylsulfonyl derivative 1

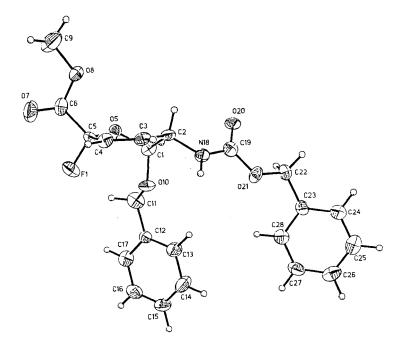
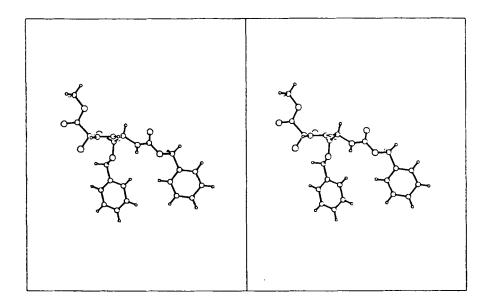
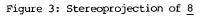




Figure 2: Projection of <u>8</u> with 50% probability ellipsoids, indicating numbering of atoms

KISS ET AL.

with methanolic ammonia¹. Only traces of <u>9</u> were obtained by this route. This reversed CD suggests a mirror-image conformation of the ring.

The coupling constants observed in the ¹H NMR spectra of diastereoisomers 9 ($J_{1,2}$ = 4.4 Hz and $J_{2,3}$ = 2.5 Hz) and 11 $(J_{1,2} = 2 \text{ Hz and } J_{2,3} = 5.5 \text{ Hz})$ suggest also that they adopt different conformations. The observed J2,3 values are indicative of a quasi-axial disposition of H-2 in 9 and of a quasi-equatorial disposition⁴ of this proton in diastereoisomer 11, and are consistent with the $O_{\rm H_1}$ (12) and ${}^{1}\text{H}_{0}$ (13) conformations as the preponderant half-chair forms of 9 and 11, respectively. The C1-benzyl and C_5 -methoxy substituents in <u>12</u> are thus in a favourable axial and quasi-axial position (anomeric effect), respectively, but the C₂-amino substituent in an unfavourable quasi-equatorial position (allylic effect). In contrast, the quasi-axial positions of the C2-amino and C5-methoxy groups are favourable in 13, whereas that of the C_1 -benzyl group is unfavourable (quasi-equatorial). The coupling values of $\underline{8}$ and $\underline{9}$ are very similar, indicating that both compounds adopt a similar conformation.

Further chemical transformations of the (hex-4-enopyranosid)uronate $\underline{7}$ are underway and will be reported in due course.

EXPERIMENTAL

<u>General</u>. Melting points were determined on a <u>Büchi</u> melting point apparatus and are not corrected. Spectral measurements were performed using the following instruments: ¹H NMR: <u>Bruker</u> HX 270 and WH 400; ¹³C NMR: <u>Bruker</u> WH 400. Chemical shifts are given in ppm relative to tetramethylsilane ($\delta = 0$ ppm) as internal standard. UV: Uvikon 810 spectrometer (Kontron). CD: modified Jobin-Yvon

352

Mark II dichrograph. All spectra were measured in dioxane (l mg/ml); positive and negative maxima are given. Optical rotations: <u>Perkin-Elmer</u> polarimeter Model 141. TLC was performed on precoated plates of silica gel (Kieselgel 60 F_{254} , Merck) and detection was effected by spraying with 10% sulfuric acid and subsequent heating. Column chromatography was carried out on silica gel 60 (0.2-0.5 mm, 35-70 mesh ASTM) of Merck.

Methyl [benzyl 3-O-benzoyl-2-[(benzyloxycarbonyl)amino]-2-deoxy- α -D-glucopyranosid]uronate (4). To a cold, stirred solution of methyl [benzyl 2-[(benzyloxycarbonyl)amino]-2-deoxy- α -D-glucopyranosid]uronate (3, 25.8 g, 60 mmol) in dry pyridine (200 ml) was added a solution of benzoyl chloride (7.1 ml, 60 mmol) in toluene (80 ml), dropwise, over 0.5 h. After the addition the mixture was stirred at room temperature for 2 h, poured on ice-water, stirred for 30 min, and extracted with dichloromethane. The dichloromethane extracts were washed with cold dilute hydrochloric acid and water, dried, and evaporated to dryness. The residue was chromatographed on silica gel by using ethyl acetate-hexane as the eluant, to give 23.9 g (74%) oil, $[\alpha]_D^{25} = + 98.5^{\circ}$ (c l.0, methanol). Anal. Calcd for C29H29N09 (535.53): C, 65.04; H, 5.46; N, 2.62. Found: C, 64.93; H, 5.02; N, 2.48.

<u>Methyl [benzyl 3-Q-benzoyl-2-[(benzyloxycarbonyl)-</u> amino]-2-deoxy-4-Q-(methylsulfonyl)- α -D-glucopyranosid] <u>uronate (5)</u>. Methanesulfonyl chloride (6.8 ml, 88 mmol) in toluene (20 ml) was added dropwise to a stirred solution of compound <u>3</u> (20.2 g, 37.6 mmol) in dry pyridine (170 ml). After being stirred for 3 h at room temperature, the mixture was poured on ice-water, stirred for 30 min and extracted with dichloromethane. The dichloromethane extracts were washed with cold dilute hydrochloric acid, 10% aqueous sodium hydrogen carbonate, and water, dried, and evaporated to dryness. The residue was recrystallized from isopropyl ether to give 18.9 g (82%) product, mp 110-111° C, $[\alpha]_D^{25}$ + 94° (c 1.0, chloroform). Anal. Calcd for C₃₀H₃₁NO₁₁S (613.63): C, 58.72; H, 5.09; N, 2.28; S, 5.22. Found: C, 58.54; H, 4.99; N,2.15; S, 5.22.

Methyl [benzyl 2-[(benzyloxycarbonyl)amino]-2,4-dideoxy-B-L-threo-hex-4-enopyranosid]uronate (6). A solution of 5 (7.5 g, 12.2 mmol) in methanol (120 ml) was treated with methanolic 0.2 N potassium hydroxide (75 ml) at room temperature for 6 h. The mixture was diluted with toluene (600 ml), filtered, and concentrated to an oil. The residue was taken up in dichloromethane, washed with water, dried, and evaporated to dryness. Recrystallization of the residue from isopropyl ether gave 4.2 g (83%) product, mp 86-7° C, $[\alpha]_{D}^{25}$ + 156.2° (c 1.0, chloroform); UV max (acetonitrile) 236.5 (£ 6420); CD (dioxane): 233 nm $(\Delta \epsilon + 12.3); ^{1}H$ NMR (CDCl₃, 400 MHz): $\delta 6.15$ (d, H-4, $J_{3,4} = 2.5 \text{ Hz}$, 5.23 (d, H-1, $J_{1,2} = 2.8 \text{ Hz}$), 5.10 (s, -COOCH₂-), ~5.1 (br, -NH-), 4.83 and 4.61 (AB pattern, C_1-OCH_2- , $J_{A,B} = 12$ Hz), 4.40 (dxdxd, H-3, $J_{2,3} \sim 9$ Hz, $J_{3,4} = 2.5 \text{ Hz}, J_{3,OH} = 6 \text{ Hz}), 3.96 (ca. dxdxd, br, H-2,$ J_{2,NH} ~9 Hz), 3.80 (s, -COOCH₃) and 2.68 (d, C₃-OH); ¹³C NMR (100.6 MHz, CDCl₃) : δ 162.42 (s, -COOCH₃), 156.73 (s, -NHCO-), 140.31 (s, C-5), 136.64 and 135.96 (s, substituted aromatic C), 128.51-128.01 (5xd, unsubstituted aromatic C), 113.33 (d, C-4), 97.72 (d, C-1), 70.79 (tr, -COOCH₂-), 67.27 (tr, -OCH₂-), 65,56 (d, C-3), 53.95 (d, C-2) and 52.37 (q, -OCH₃). Anal. Calcd for $C_{22}H_{23}NO_7$ (413.43): C, 63.92; H, 5.61; N, 3.39. Found: C, 63.74; H, 5.76; N, 3.32.

<u>Methyl [benzyl 2-[(benzyloxycarbonyl)amino]-3-chloro-2,3,4-trideoxy-B-L-threo-hex-4-enopyranosid]uronate</u> (7). A solution of <u>6</u> (4.1 g, 9.9 mmol) in ethyl acetate (100 ml) containing thionyl chloride (10 ml, 13.8 mmol) was stirred at room temperature for 1 h, and evaporated to dryness. The residue was recrystallized from isopropyl ether to give 3.1 g (73%) product, mp 113-114° C, $[\alpha]_D^{25}$ + 223.8° (c 1.0, chloroform); UV max (acetonitrile) 240.2

(\pounds 7320); CD (dioxane): 238 nm ($\Delta \pounds$ +18.5); ¹H NMR (CDC1₃, 400 MHz): δ 6.15 (d, H-4, J_{3,4} ~2.5 Hz), 5.29 (br, J_{1,2} = 1-2 Hz, H-1), 5.11 (s, -COOCH₂-), 5.04 (d, -NH-, J_{2,NH} ~8.5 Hz), 4.86 and 4.66 (AB pattern, C₁-OCH₂-, J_{A,B} = 12 Hz), 4.57 (dxd, H-3, J_{2,3} ~8 Hz), 4.24 (dxdxd, H-2) and 3.82 (s, -COOCH₃); 13C NMR (CDC1₃, 100.6 MHz): δ 161.83 (s, -COOCH₃), 156.02 (s, -NHCO-), 140.88 (s, C-5), 136.42 and 136.19 (s, substituted aromatic C), 128.44 -127.80 (5xd, unsubstituted aromatic C), 111.25 (d, C-4), 97.20 (d, C-1), 70.84 (tr, -COOCH₂-), 66.94 (tr, -OCH₂-), 54.30 (d, C-2 or C-3), 52.46 (q, -OCH₃) and 52.40 (d, C-3 or C-2). Anal. Calcd for C_{22H22}ClNO₆ (431.87): C, 61.19; H, 5.13; N 3.24; Cl, 8.21. Found: C, 61.16; H, 5.43; N, 3.24; Cl, 8.24.

Methyl [benzyl 2-[(benzyloxycarbonyl)amino]-2,3,4-tri $deoxy-5-fluoro-\alpha-D-erythro-hex-3-enopyranosid]uronate (8).$ A solution of $\underline{7}$ (1.2 g, 2.8 mmol) in acetonitrile (30 ml) containing silver fluoride (3 g, 24 mmol) was stirred at room temperature for 12 h in the dark, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (elution with toluene-ether, 9:1) gave 0.94 g (81%) product, mp 130-131°C (from isopropy1 ether), $[\alpha]_D^{25} + 0.9^{\circ}$ (c 1.0, chloroform). CD (dioxane) : 217 nm ($\Delta \epsilon$ -15.3); ¹H NMR (400 MHz, CDCl₃): δ 6.01 (d, H-3 or H-4, $J_{3,4} = 10-11$ Hz), 5.98 (d, H-4 or H-3), 5.19 (d, H-1, $J_{1,2} = 4.2$ Hz), 5.12 (d, -NH-, $J_{2,NH} \sim 9$ Hz), 5.11 (s, -COOCH₂-), 4.96 and 4.54 (AB pattern, C_1 -OCH₂-, $J_{A,B}$ = 11.2 Hz), 4.70 (dxdxd, H-2, $J_{2,3} \leq 2$ Hz) and 3.86 (s, -COOCH₃); (270 MHz, benzene-d₆): δ 5.75 (~d, H-3 or H-4, $J_{3,4} = 10$ Hz), 5.46 (~d, H-4 or H-3, $J_{3,F} \leq 1$ Hz), 5.01 (s, -COOCH₂-), 4.88 (d, H-1, $J_{1,2}$ = 3.5 Hz), 4.83 and 4.15 (AB pattern, C_{1} -OCH₂-, $J_{A,B}$ = 11.5 Hz), 4.75 (br, H-2 and -NH-, $J_{2,F} \leq 1$ Hz) and 3.26 (s, -COOCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ 165.96 (d, -COOCH₃, $^{2}J_{C,F}$ = 37.4 Hz), 155.79 (s, -NHCO-),136.42 and 136.09 (s, substituted aromatic C), 132.09 (d, C-3, ${}^{3}J_{C,F} = 8.4 \text{ Hz}$), 128.54 -128.12 (5xd, unsubstituted aromatic C), 122.62 (d, C-4,

 ${}^{2}J_{C,F} = 27.5 \text{ Hz}$, 97.26 (d, C-5, ${}^{1}J_{C,F} = 224.3 \text{ Hz}$), 94.61 (d, C-1), 70.13 (tr, $-COOCH_{2}$ -), 67.12 (tr, $-OCH_{2}$ -), 53.31 (q, $-OCH_{3}$) and 46.91 (d, C-2). Anal. Calcd for $C_{22H_{2}}FNO_{6}$ (415.42): C, 63.61; H, 5.34; N, 3.57; F, 4.57. Found: C, 63.36; H, 5.46; N, 3.37; F, 4.71.

Benzyl 2-[(benzyloxycarbonyl)amino]-2,3,4-trideoxy-5-C-methoxy- α -<u>D</u>-erythro-hex-3-enopyranosiduronamide (9). Compound 8 (0.30 g, 0.72 mmol) was stirred in saturated methanolic ammonia (20 ml) for 15 min at room temperature. The solid material was then filtered off, washed with methanol, and recrystallized from methanol to give 0.20 g (67%) product, mp 185°C dec, $[\alpha]_D^{25}$ -6.8° (c 0.8, chloroform). CD (dioxane): 236 nm ($\Delta \epsilon$ -18.9) and 206 ($\Delta \epsilon$ -13.5); ¹H NMR (270 MHz, CDCl₃): δ 6.62 and 5.55 (br, -CONH₂), 5.99 (dxd, H-3 or H-4, $J_{3,4} = 11$ Hz, $J_{3,2}$ or $J_{4,2} = 2.5$ Hz), 5.91 (dxd, H-4 or H-3, $J_{2,4}$ or $J_{2,3} \sim 2$ and additional long range coupling), 5.19 (d, H-1, $J_{1,2} = 4.4$ Hz), 5.13 (d, -NH-, J_{2,NH} ~10 Hz), 5.09 (s, -COOCH₂-), 4.91 and 4.57 (AB pattern, C_1 -OCH₂-, $J_{A,B}$ = 12 Hz), ~4.56 (m, H-2) and 3.45 (s, -COOCH₃). Anal. Calcd for $C_{22}H_{24}N_{2}O_{6}$ (412.44): C, 64.07; H, 5.87; N, 6.79. Found: C, 63.97; H, 5.94; N, 6.71.

<u>Methyl [benzyl 2-[(benzyloxycarbonyl)amino]-2-deoxy-3,4-di-O-(methylsulfonyl)- α -D-glucopyranosid]uronate (1).</u> Compound <u>3</u> was treated with methanesulfonyl chloride exactly as described for <u>5</u> to give, after recrystallization from ethyl acetate-hexane, 74% product, mp 141-142°C, $[\alpha]_D^{25} = + 99.4^{\circ}$ (c 1.0, chloroform); ¹H NMR (270 MHz, CDCl₃): δ 5.04 (d, H-1, J_{1,2} = 3.3 Hz), 4.73 and 4.53 (AB pattern, C₁-OCH₂-, J_{A,B} = 12 Hz), 4.36 (~d, H-5, J = 9.3 Hz), 4.20 (dxdxd, H-2, J_{2,3} ~J_{2,NH} ~10 Hz), 3.83 (s, -COOCH₃), 3.11 and 2.91 (s, -SO₂CH₃). Anal. Calcd for C_{24H29N012}S₂ (587.61): C, 49.06; H, 4.97; N, 2.38; S, 10.91. Found: C, 49.08; H, 5.11; N, 2.21; S, 10.92.

<u>Benzyl 2-[(benzyloxycarbonyl)amino]-2,3,4-trideoxy-5-</u> <u>C-methoxy-B-L-threo-hex-3-enopyranosiduronamide</u> (11). Asolution of 1 (3.0 g, 5.1 mmol) in saturated methanolic</u> X-Ray Crystal Structure Analysis of 8

Crystal Data

```
Formula: C_{22}H_{22}F \times D_6

Molecular Weight: 415.42 F(000) = 872

Melting Point : 130-131°C

Crystallisation Solvent: Isopropylether

Space Group and Cell Dimensions:

Orthorhombic: P212121, a = 4.929(1), b = 9.897(1), c = 41.483(5)<sup>R</sup>

Density: D = 1.36mg.m<sup>-3</sup>, Z = 4.

\mu (Cu-K-alpha) = 0.85mm<sup>-1</sup>, absorption effects ignored.
```

Data collection

Crystal size: 0.05 x 0.1 x 0.18mm³ Temperature: 170^oK Wavelength: 1.5418Å Scan mode: theta/2theta Scan speed: 1.4^o/min minimum speed: strong reflections measured at up to 10^o/min. Scan width: 3.0^o Theta min/Theta max: 0/55.75 Peak:Background ratio: 5:1, Intensity from profile analysis. Total data measured: 1621 excluding standards Total data observed: 10⁶6 Rejection criterion: I>2.5×sigma(I) Number of parameters: 278 Weights: $w = 1/(\sigma^2 |F_0| + 0.001 \times |F_0|^2)$

Data were collected on a Nicolet R3m four-circle diffractometer fitted with a graphite monochromator and the LT1 cooling apparatus.

Structure Determination and Refinement

The structure was determined by direct methods using 48 starting phase permutations. Refinement proceeded smoothly to convergence at R = 0.0451 with anisotropic refinement of all non-hydrogen atoms. The position of the hydrogen atom attached to the N atom was found from a difference map. The remaining hydrogen atom co-ordinates were calculated using known geometries. All calculations were carried out with the SHELXTL⁷ package of the R3m System.

The structural parameters are outlined in Tables 1 to 6.

ammonia (50 ml) was stirred at room temperature for 17 h, filtered, and concentrated under reduced pressure. Examination of the crude product by TLC (chloroformmethanol 19:1) then revealed the presence of a major product (<u>11</u>, R_f 0.4) and a trace of <u>9</u> (R_f 0.37). An analytical sample of <u>11</u> was obtained by column chromatography on silica gel with chloroform-ethanol 99:1; mp

TABLE 1.	Atom coord	dinates (x10 ⁴)	and tempera	ture factors	(A x10 ³)
atom	Χ.	У	z	U	
<pre>Downloaded At: 12:14 23 January 2011 * 7757777777777777777777777777777777777</pre>	10915(7) 7052(13) 7242(14) 9382(13) 10183(13) 8892(13) 6786(8) 7786(15) 8478(11) 5880(14) 4646(18) 9335(8) 9209(14) 11266(13) 11960(15) 13834(15) 14291(14) 12436(14) 7818(15) 14291(14) 12436(14) 7818(15) 14291(14) 12436(13) 6738(14) 8391(15) 103527(14) 8934(13)	2493(4) 2129(6) 3381(6) 4324(6) 4324(6) 3327(6) 2555(4) 4069(6) 3847(5) 4955(8) 1346(4) -23(5) -874(6) -23(5) -874(6) -2609(6) -275(6) 1987(4) 1278(6) 4987(4) 1278(6) -275(6) -1106(6) -1189(6) -440(6) pic U defined	2113(1) 1543(1) 1326(1) 1456(1) 1760(1) 1873(1) 2291(1) 2205(1) 2471(2) 1487(1) 1634(1) 1474(1) 1474(1) 1474(1) 1474(1) 1508(1) 1474(1) 1508(1)1508(1) 1508(1) 1508(1)1508(1) 1508(1)1508(1) 1508(1)1508(1) 1508(1)1508(1	43(1)* 28(2)* 26(2)* 27(2)* 26(1)* 26(1)* 26(2)* 30(2)* 40(2)* 40(2)* 30(2)* 40(2)* 30(2)* 30(2)* 30(2)* 30(2)* 33(2)*	
trace	of the orth	ogonalised U	tensor		

TABLE 2.	Bond lengths	(%)
F(1)-C(5) C(1)-O(5) C(2)-C(3) C(3)-C(4) C(5)-O(5) C(6)-O(7) C(1)-C(12) C(12)-C(17) C(14)-C(17) C(14)-C(17) C(14)-C(17) C(16)-C(17) C(12)-C(17) C(17)-C(17)	1.385(8) 1.385(8) 1.383(9) 1.374(9) 1.228(8) 1.441(7) 1.368(8) 1.387(9)	C(1)-C(2) C(1)-O(10) C(2)-N(18) C(4)-C(5) C(5)-C(6) C(6)-O(8) D(10)-C(11) C(12)-C(13) C(12)-C(14) C(15)-C(14) C(15)-C(16) N(18)-C(19) C(19)-O(21) C(22)-C(23) C(23)-C(28) C(27)-C(28)

1	.386(7)
1	.448(7)
1	.496(8)
ī	.535(8)
ī	.335(8)
ī	.445(6)
	.371(8)
=	.388(9)
	.367(8)
	.329(8)
	.324(7)
-	.504(8)
	.403(9)
1	.391(10)
1	.360(9)

1.533(8)

gles (deg.)			
120.8(6) 119.7(6)	$\begin{array}{c} \widehat{C(1)} - C(2) - C\\ C(3) - C(2) + N\\ C(3) - C(2) + N\\ C(3) - C(5) - C\\ F(1) - C(5) - C\\ C(5) - C(5) - C\\ C(5) - C(6) - 0\\ C(1) - C(12)\\ C(13) - C(12)\\ C(13) - C(12)\\ C(13) - C(14)\\ C(15) - C(16)\\ C(15) - C(16)\\ C(2) - N(18) - C(19)\\ C(22) - C(23)\\ C(24) - C(23)\\ C(24) - C(25)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
opic temperature	factors (A x10 ³))	
U ₂₂	U ₃₃ U ₂₃	ل الم الم ال	
44(2) 4 25(4) 2 28(4) 2 22(3) 3 21(3) 3 36(4) 2 28(2) 4	$\begin{array}{cccc} 7(2) & 8(2) \\ 2(3) & -2(3) \\ 8(3) & 1(3) \\ 1(3) & 0(3) \\ 2(3) & -3(3) \\ 24(3) & -2(3) \\ 5(2) & -3(2) \end{array}$	$\begin{array}{ccc} -8(2) & 11(2) \\ 6(3) & -5(3) \\ 7(3) & 6(3) \\ 10(3) & 0(3) \\ 3(3) & -5(4) \\ -1(3) & 8(4) \\ -0(2) & -4(2) \\ -3(3) & -15(4) \end{array}$	
	113.3(4) 111.2(4) 122.1(5) 107.6(5) 115.8(4) 111.6(5) 116.3(5) 114.7(5) 108.7(5) 120.0(6) 120.9(5) 120.9(5) 120.9(5) 123.9(5) 123.9(5) 120.9(5) 120.9(5) 120.9(6) 120.8(6) 129.7(6) 129.7(6) 120.5($\begin{array}{c} 109.1(4) & C(2)-C(1)-0\\ 113.3(4) & C(1)-C(2)-C\\ 113.3(4) & C(3)-C(2)-N\\ 122.1(5) & C(3)-C(4)-C\\ 107.6(5) & F(1)-C(5)-C\\ 115.8(4) & F(1)-C(5)-C\\ 116.0(4) & C(5)-C(6)-C\\ 116.0(4) & C(5)-C(6)-C\\ 116.0(4) & C(5)-C(6)-C\\ 116.0(4) & C(5)-C(1)-C(12)\\ 119.5(5) & C(1)-C(12)\\ 120.0(6) & C(13)-C(12)\\ 120.0(6) & C(13)-C(14)\\ 119.5(5) & C(13)-C(14)\\ 120.9(5) & C(2)-N(18)-C(12)\\ 120.9(5) & C(2)-N(18)-C(12)\\ 120.9(5) & C(2)-N(18)-C(12)\\ 120.9(5) & C(2)-C(23)\\ 120.8(6) & C(24)-C(25)\\ 119.7(6) & C(26)-C(27)\\ 120.5(6) \end{array}$	$\begin{array}{c} 109.1(4) & C(2)-C(1)-D(10) & 107.7(5) \\ 113.3(4) & C(1)-C(2)-C(3) & 109.4(5) \\ 111.2(4) & C(3)-C(2)-N(18) & 111.0(5) \\ 122.1(5) & F(1)-C(5)-O(5) & 109.8(5) \\ 107.6(5) & F(1)-C(5)-C(6) & 104.7(4) \\ 111.6(5) & 0(5)-C(5)-C(6) & 106.8(5) \\ 116.0(4) & C(5)-C(6)-O(6) & 125.3(6) \\ 110.3(5) & 0(7)-C(6)-O(8) & 125.3(6) \\ 114.7(5) & C(1)-O(10)-C(11) & 113.7(4) \\ 108.7(5) & C(11)-C(12)-C(13) & 121.3(5) \\ 119.5(5) & C(13)-C(14)-C(15) & 120.2(6) \\ 120.0(6) & C(13)-C(14)-C(17) & 119.2(6) \\ 120.0(6) & C(13)-C(16)-C(17) & 120.2(6) \\ 120.9(5) & C(2)-N(18)-C(19) & 122.0(5) \\ 123.9(5) & C(19)-0(21)-C(22) & 117.1(5) \\ 124.7(5) & C(19)-0(21)-C(22) & 117.1(5) \\ 107.6(5) & C(24)-C(23)-C(24) & 121.7(5) \\ 119.9(5) & C(24)-C(23)-C(24) & 121.7(5) \\ 119.9(5) & C(24)-C(23)-C(26) & 119.5(6) \\ 120.8(6) & C(26)-C(27)-C(28) & 118.4(6) \\ 120.5(6) & & \\ 22(3) & 31(3) & 0(3) & 0(3) \\ 22(3) & 31(3) & 0(3) & 0(3) \\ 21(3) & 32(3) & -3(3) & 3(3) & -5(4) \\ 36(4) & 24(3) & -2(3) & -1(3) & 8(4) \\ 28(2) & 25(2) & -3(2) & -3(2) & -1(2) \\ 25(4) & 32(3) & -2(3) & -1(3) & 8(4) \\ 28(2) & 25(2) & -3(2) & -3(2) & -1(2) \\ 25(4) & 32(3) & -2(3) & -1(3) & 8(4) \\ 28(2) & 25(2) & -3(2) & -3(2) & -1(2) \\ 25(4) & 24(3) & -2(3) & -1(3) & 8(4) \\ 28(2) & 25(2) & -3(2) & -3(2) & -1(2) \\ 25(4) & 24(3) & -2(3) & -1(3) & 8(4) \\ 28(2) & 25(2) & -3(2) & -3(2) & -1(2) & -1(2) \\ 25(4) & 22(2) & -3(2) & -3(2) & -1(2) & -1(2) \\ 25(4) & 22(3) & -2(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(3) & 22(3) & -3(3) & -1(3) & -1(3) \\ 21(4) & 28(2) & 25(2) & -3(2) & -1(2) & -1(2) \\ 21(4) & 21(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & 21(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & 21(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & 21(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & -2(2) & -1(2) & -1(2) & -1(2) \\ 21(4) & -2(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & -2(4) & -2(2) & -1(2) & -1(2) \\ 21(4) & -2$

atom	UAA	U ₂₂	U ₃₃	^U 23	U _A 3	U ₂₂
F(1) C(2) C(2) C(3) C(4) C(5) C(6) C(6) C(7) C(8) C(9) C(10) C(12) C(12) C(12) C(12) C(14) C(15) C(14) C(15) C(14) C(15) C(12) C(12) C(12) C(12) C(12) C(22)	$\begin{array}{c} 36(2)\\ 28(4)\\ 28(4)\\ 28(4)\\ 186(3)\\ 288(4)\\ 288$	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		8(2) -2(3) 1(3) -3(3) -3(3) -2(2) -2(3) -1(2) -1(2) -1(2) -1(2) -1(3) -3(3) -4(3) -3(3) -3(3) -13(3) -14(4) -8(3) nent takes	$\begin{array}{c} -8(2) \\ 6(3) \\ 7(3) \\ 10(3) \\ -1(3) \\ -3(3) \\ -3(3) \\ -3(3) \\ -3(3) \\ -3(3) \\ -1(5) \\ -3(3) \\ -1(5) \\ -2(3) \\ 11(5) \\ -2(3) \\ 11(4) \\ -2(3) \\ -2(3) \\ -2(3) \\ -2(3) \\ -2(3) \\ -2(3) \\ -2(3) \\ -2(3) \\ -11(4) \\ -7(4) \\ -11(4) \\ -11(4) \\ $	$11(2) \\ -5(3) \\ 0(3) \\ -58(4) \\ -58(42) \\ -155(43) \\ -36(24) \\ -35(24) \\ -36(24) \\ -36(24) \\ -36(24) \\ -136(24) \\ -136(24) \\ -106(43) \\ -198(44) \\ -198(44) \\ -188($

 $-2 \operatorname{T} (h^2 a \times U_{A1} + k^2 b \times U_{22} + \dots + 2hka \times b \times U_{11})$

TABLE 5.	Hydrogen	coordinates	(x10 ^{\$}) and	temperature	factors	$(A \times 10^{3})$
atom	x	У	z	U		
H(1) H(2) H(2) H(3) H(9b) H(9b) H(11b) H(11b) H(115) H(122b) H(125) H(225) H(225) H(225) H(227) H(28)	5484 5522 10188 11607 3151 5869 39804 7427 11151 14338 15108 16238 15108 19284(108 4036 4211 5407 8180 11555 11871 9125	1589 3836 4974 4874 6293 5030 5030 -350 -3216 -3216 -3216 -32479 -2034 (49) 708 1913 1086 -237 -1618 -1787 -509	1495 1327 1314 2884 2579 2621 1805 1033 1091 1633 1870 1958(11 439 -657 -429 460	42(44) 422(44)		

TABLE	6.	Torsion	angles	(deg.)
C(2)-(C(1)-(C(2)-(C(2)-(C(3)-(C(1) C(2) C(3) C(4)	-C(2)-C(-O(5)-C(-C(3)-C(-C(4)-C(-C(5)-O(-C(5)-C(-O(5)-C(5) -6(4) -2 5) -7	0.5(6) 0.1(6) 0.7(8) 2.7(9) 2.5(8) 5.4(7)

163-164°C (from ethanol), $[\alpha]_D^{25} + 50.7^\circ$ (c 0.15, chloroform). CD (dioxane) : 203 ($\Delta \varepsilon$ - 18.8) and 233 nm ($\Delta \varepsilon$ + 14.0); ¹H NMR (400 MHz, CDCl₃) : δ 6.61 and 5.62 (br, -CONH₂), 6.10 (dxd, H-3, J_{2,3} = 5 Hz, J_{3,4} = 10 Hz), 6.02 (dxd, H-4, J_{2,4} = 1 Hz), 5.16 (d, H-1, J_{1,2} = 2.0 Hz), 5.12 (~s, -COOCH₂-), 5.10 (br, -NH-), 4.80 and 4.73 (AB pattern, C₁-OCH₂-, J_{A,B} = 12 Hz), 4.32 (m, H-2) and 3.34 (s, -OCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ 169.93 (s, -NHCO-), 156.28 (s, -CONH₂), 137.10 and 136.34 (s, substituted aromatic C), 129.03 - 127.43 (5xd, unsubstituted aromatic C), 98.14 (s, C-5), 95.33 (d, C-1), 70.63 (tr, -COOCH₂-), 67.10 (tr, -OCH₂-), 51.20 (q, -OCH₃) and 46.10 (d, C-2). Anal. Calcd for C_{22H24N2O6} (412.44): C, 64.07; H, 5.87; N, 6.79. Found: C, 63.98; H, 5.86; N, 6.75.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to Drs. L. Chopard and M. Grosjean of our Central Research Units for the spectroscopic determinations and to Dr. A. Dirscherl for the microanalyses.

REFERENCES

- 1. J. Kiss and W. Arnold, Helv., 64, 1566 (1981).
- 2. K. Heyns and H. Paulsen, Ber., 88, 188 (1955).
- 3. J. Kiss and F. Burckhardt, <u>Helv.</u>, <u>52</u>, 2622 (1969).
- 4. R. J. Ferrier and G. H. Sankey, <u>J. Chem. Soc.(C)</u>, 2345 (1966).
- 5. R. Blattner, R. J. Ferrier and P. C. Tyler, <u>J. Chem</u>. Soc. Perkin I, 1535 (1980).
- 6. J. C. P. Schwarz, <u>J. C. S. Chem. Comm</u>., 505 (1973).
- G. M. Sheldrick, University of Goettingen, FRG, SHELXTL 3.0 (1981).